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Ecosystem Modeling Theory, and Ideas

toward Global Vegetation Modeling
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Introduction

A primary purpose of this review is to convey the lessons I have

learned in the development of our current forest ecosystem modeling

approach, from its origins in 1973 as a single-tree water-balance

model to our current regional applications. This Is not an exhaustive

literature review, but an opportunity for me to share past successes

and failures, and ideas on future terrestrial modeling appropriate to
earth systems modeling.

My interests in 1973 as a physiological ecologist were to use com-

puter simulation to explore the system significance of the canopy

transpiration measurements ! was taking in the field, and to under-

stand the importance of stomatal closure in maintaining a tree's
water balance under the severely water-limited conditions of west-

ern forests. My introduction to mountain climatology in 1977, and

remote sensing in 1982, has resulted in our present modeling logic

that incorporates ecological, meteorological, and remote sensing the-

ory and measurements into an integrated framework for calculating

ecosystem process rates over large areas.

My second intent here is to use this accumulated bottom-up

experience to offer ideas of how terrestrial ecosystem modeling can

be taken to the global scale, earth systems modeling. I will suggest a
logic where rather mechanistic ecosystem models are not them-

selves operated globally, but are used to "calibrate" much simplified

models, primarily driven by remote sensing, that could be imple-

mented in a semlautomated way globally, and in principle could

interface with atmospheric general circulation models (GCMs).
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At the outset, I acknowledge the leadership of R.E. Dickinson and

P.J. Sellers in developing first-generation models of biospheric

processes operated within the GCMs. To me, it Is not an accident

that physical scientists, not biologists, developed the first GCM-con-

nected biospherlc models. It seems that most biologists of my genera-

tion were trained from the beginning as reductionists, attempting to

dissect and understand what they observed. The fundamental unit of

biology is the individual organism, which automatically defines a

very restricted spatial domain of interest, and makes global scaling

rather untenable. Finally, much of classical biology was descriptive

and revolved around taxonomy, the classification of species (which

now total something like 100,000 vascular plants worldwide), and

attention was focused on the unique characteristics defining each

species. The search for common general principles of biological activ-

ity, for simple definition of structural and functional attributes of

organisms, and for intraorganismal activity (i.e., ecosystem activity)
has been a rather recent emphasis of "ecosystem analysis" or sys-

tems ecology, a branch of biology that still is in its infancy.

i

!

i

Current Problems of Global Biosphere Models

I believe that the GCMs with integrated biospheric models, such

as the biosphere-atmosphere transfer scheme (BATS; Dickinson et

al., 1986; Wilson et al., 1987) and the simple biosphere model (SiB;

Sellers et al., 1986), are the best point of departure for future earth

system models. I will not discuss some other biologically based

global models, particularly the global carbon models (Emanuel et
al., 1984), because they do not incorporate a direct interface with

global atmospheric and hydrospheric models, which is essential. It
seems to me that the core deficiencies of BATS and SiB are in two

areas. First, the original BATS and SIB treated only energy, water,

and momentum variables of the land surface because those are the

core flux variables active In the GCMs, so their purpose was to pro-

vide surface boundary conditions for the climate models, not repre-

sent complete biospheric systems. Ideally a general earth system

model will also want a rather sophisticated carbon cycle (including

methane and nonmethane hydrocarbons, or NMHCs), nitrogen,

phosphorus, sulfur, and possibly other elemental cycles. Addition-

ally, some level of surface disturbance-biome replacement and suc-

cession must be treated.

Second, current GCMs define the landscape at a scale that is

coarse (=20,000 km 2) and rather static over time. The spatial

coarseness means that a cell that actually Incorporates a wide vari-

ety of biomes and mesoclimates is aggregated to a single defined
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surface type and activity. It also stretches the measurement and

modeling capabilities of ecology beyond the size that we have ever

worked with before. Without seasonal dynamics in the GCM surface

parameterizations linked to the climate simulations, the feedback

ability for the surface biological responses to influence the atmos-

phere is lost, and the ability to realistically model events like the
1988 drought of North America is also lost.

Lessons from the Regional

Ecosystem Simulation System

Defining Key Processes, Variables, and Classifications

To begin the evolution of "point-scale" ecological models to GCM

scales, my colleagues and I have developed a Regional Ecosystem

Simulation System (RESSys) over the last six years (Figure I).

RESSys has three core models, which use four additional core data

sets. A topographic model from Band (1986) inputs digital elevation

data and outputs effectively a terrain map. This provides a template
for the definition of the rest of the system, which can be defined to

differing levels of topographic complexity and spatial resolution.

Hence, it allows us to zoom in on a small 10-km 2 watershed or pan

out to a whole 10,000-km 2 region. A mountain climatological model

uses this topographic file to extrapolate point-measured meteorolog-

ical data across the region two-dimensionally for slope, aspect, and

elevation. The output file of this model generates the Input file of

daily meteorological conditions, across the landscape for Forest-

BGC (Forest Biogeochemical Cycle), the ecosystem process model.

Forest-BGC then simulates the ecosystem processes of importance,

which are then mapped back to the region on the topographic tem-

plate. TOPMODEL then allows topographically defined hydrologic

routing. A new project, HYBRID, is connecting the carbon balance of

Forest-BGC with the population succession dynamics of a FORET-

type model (Shugart, 1984) to give the most realistic forest stand
simulator possible.

Agreement on the key processes required for a global terrestrial

ecosystem model will be important when defining the essential clas-

sification logic for global partitioning. From the origins as a water

balance model, Forest-BGC emphasizes canopy gas exchange

processes and system water storages in snow and soil. Currently in
RESSys we require definition of only leaf area index (LAI) and soil

water holding capacity (SWC) of the landscape, with defaults for all

other parameters. The Forest-BGC model was specifically designed

to be sensitive to the parameterization of canopy processes by LAI

and soil processes by SWC. These choices of one key vegetation and
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Regional Ecosystem Simulation System (RESSys)
PARAMETERS SOURCES DERIVED INPUTS MODELS OUTPUTS

GOES
Climate NOANNWS

Topography USGS
(DEM, DMA)

Soils SCS

NOANAVHRR

Vegetation TM, SPOT

Solar Radiation[
Temperature I

Humidi_

Preclpitationl "_ MT-CLIM

Elevation _/ _ Stream

Slope TOPMODEL Discharge

Aspect

Soil Water I J" ET

Holding Capacityl"_ FOREST-BGC

_" PSN
Biome Typel/ _ Stand

Leaf area index[ HYBRID Growth

AVHRR = AdvaLnced Very High Resolution Radiometer

GOES = Geostationary Orbiting Environmental Satellite
NOAA = National Oceanic and Atmospheric Administration

NWS = National Weather Service

SCS = Soil Conservation Service
USGS = United States Geological Survey

DEM = Digital Elevation Mapping
DMA = Defense Mapping Agency

SPOT = Syst_me probatoire d'observation de la terre

FOREST-BGC = Forest ecosystem simulation model

HYBRID = Community dynamics simulator
MT-CLtM = Mountain microclimate simulator

TOPMODEL = Hydrologic muting model

ET = Evapotranspiration, mmhtr
PSN = Photosynthesis, Mg/ha./yr

TM = Thematic Mapping

Figure 1. An organizational diagram for RESSys, showing the sources of raw climatic and biophysi-
cal data, the derived variables produced, and their incorporation into the topoclimate (M'F-CLIM,

Running et al., 1987) and ecosystem simulation (Forest-BGC, Running and Coughlan, 1988) models.

one edaphlc variable then direct our landscape classification, which

otherwise could have near-endless layers of variables (quite fashion-

able when showing off geographical information system, or GIS,

capabilities). We have recently added total canopy nitrogen as a sim-

ilar, simplifying definition of forest nutrient status.
The other control on landscape definition is the topographically

induced microclimate variability. Sensitivity of the ecosystem model

to climate then helps to define what resolution of elevational and

topographic detail need be defined. For example, we have found

temperature resolution of + I°C and precipitation of + 2ram to be

adequate for driving the ecosystem model.

In simplifying earlier ecosystem models, I eliminated a number of

seemingly important details. No internal physiology Is represented (of

cellular water stress, phloem carbohydrate transport, etc.). No canopy
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structure, leaf age class, or leaf angular distribution ts defined, only

simple LAI. No below-ground details of rooting processes, root water,

or nutrient uptake capacity are explicitly defined. Some of these vari-

ables are virtually unmeasurable in the field even for small intensive

study sites; how would we estimate them at regional or global scales?

What we really want is to relate below-ground activity to canopy
responses that can be more directly measured.

The following processes are calculated by Forest-BGC:

• Hydrologic:

precipitation, snow vs. rain partitioning
snowmelt

canopy/litter interception and evaporation

surface runoff vs. soil storage

transpiration physiological water stress and surface resistance
subsurface outflow

• Carbon:

photosynthesis

maintenance respiration

growth respiration

carbon allocation (leaf/stem/root)

net primary production

litterfall decomposition (trace gas emissions, CH4, NMHC)

• Nitrogen:

mineralization

allocation (leaf/stem/root/available)

Although the resulting model, neglecting many ecosystem attrib-

utes and relating most key variables to LAI and climate, will seem

oversimplified to many ecologists, it provides the only means we see

to bring ecosystem modeling to regional scales.

I emphasize that an optimal global vegetation classification

scheme cannot be devised until a modeling logic has been defined,

so that the classification can be based on the variables, such as LAl

in our case, that the model has been designed to be particularly
sensitive to.

Spatial Scale Definition

GCMs define the land surface In only a spatially coarse (cells of

_-20,000 km2) and static way. Each cell is defined initially as a single
vegetation type, and no dynamic interaction occurs between the

resulting climate and surface vegetation definition, a limitation that

ls particularly unfortunate for long time simulations of 10-100

years. We have found in RESSys development that the limiting fac-
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tor is not the accuracy of our "point" models, but the accuracy with

which we can define key parameters across the landscape. First,

one must decide upon the key variables, such as LAI; then one must

devise ways to map them across the region. A breakthrough in our

regional logic was the demonstration that LAI could be defined by

satellite (Peterson et al., 1987).

By far our greatest difficulty in landscape definition has been in

soils data. The soil reservoirs of water, carbon, and nitrogen are sig-

nificant components of the ecosystem cycles, and have fundamen-

tally different (usually 10-100 times slower) time constants than

canopy processes. Historically, soil science has emphasized the tax-
onomic classification of soils into a system that qualitatively defines

the temperature and moisture conditions of soil development. How-

ever, standard soils maps, such as those of the U.S. Soil Conserva-

tion Service, do not define soil physical structure, depth, water

potential release curves, or chemistry quantitatively. At global scales

the problem of nonquantitative, spatially coarse soils data is even

more acute. We are working on a hydrologic equilibrium theory that

integrates climate, LAI, and soil water holding capacity, and allows
one to infer the soil characteristics from observable climate and

maximum LAI (Nemani and Running, 1989a). For global-scale work,

we suspect some type of similar logic will be necessary.

Time Scale Definition

The ecosystem process model Forest-BGC has a dual time resolu-

tion. Key hydrologic processes (e.g., interception and evapotranspira-

tion), and carbon process variables (e.g., photosynthesis and mainte-

nance respiration) are calculated daily. The carbon allocation to

biomass is calculated annually, as are the litterfall, decomposition,

and nitrogen budget processes. We found the dual time step essen-

tial for adequately and efficiently simulating these ecosystem

processes. The hydrologic partitioning of precipitation into instanta-

neous interception and evaporation vs. longer-term snow or soil

water storage and transpiration or hydrologic outflow proved to be

the key process that demands daily timing. Accurate hydrologic par-

titioning is essential in arid areas for simulating seasonal soil

drought and plant water stress, and is essential for producing correct

timing on stream discharge hydrographs. In areas of frequent show-

ers, even higher time resolution is useful. However, we have compro-

mised on a daily time step for our models after many years of model-

ing at hourly time steps (see Knight et al., 1985). Because, on

average, diurnal climatology is very predictable, we found that going

from hourly to daily meteorological drivers cut the climate files to

I/24 size, yet we could simulate the diurnal conditions well enough
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to predict seasonal canopy process rates from a daily model to within

3% of the hourly simulations (Running, 1984). However, given that

GCMs require high time resolution, nothing precludes our ecosystem

model from matching their time step except computational load.

The carbon growth and decomposition processes and the nitrogen

budgets do not require daily time scales. In temperate evergreen

ecosystems, yearly calculations match the timing of field measure-

ments, making initial model development and validation convenient.

In more seasonal biomes, such as grasslands, the carbon/nitrogen

computations need to be done monthly or even weekly to describe

certain processes.

The commonly stated principle relating small space to short time

resolution and progressively larger spatial scale to longer time reso-

lution makes a nice graph, but has many exceptions. GCMs define a

huge spatial scale at a very fine temporal scale, on the order of

12-30 minutes. For atmospheric dynamics, this is an appropriate

space-time definition for the processes being represented. Likewise

In ecology, events that are large in spatial scale can occur in a very

short time. Ecosystem processes that are driven by meteorological

conditions, notably the canopy gas exchange i_rocesses, are Just as

dynamic temporally as climate is. A critical problem of ecological

representation, though, is that while a canopy process such as pho-

tosynthesis occurs over a large region, the absolute control is still

exerted within the physiology of the Individual organism. However,

this does not argue that we then must represent those individual

organisms explicitly.

Many important ecosystem processes are triggered by episodic

extreme events. Major freezes can alter regional vegetation cover and

activity in one night, and the vegetation may take years to recover.

The meteorological conditions that triggered the Yellowstone fires of

1988 were of a short time scale, yet the results will be felt for a cen-

tury. Both our ecosystem models and our climate models tend to be

central tendency simulators, representing mean conditions and

mean responses and missing important extreme events.

Standardized Meteorological Data

Ecological modeling has typically been developed around intensive

study sites, where a central meteorological station was a In-st prior-

ity. Because one cannot install custom meteorological stations every-

where, the logic of using a routine weather data base with extrapola-

tions was necessary for RESSys. It became clear that daily

meteorological data were routinely available from standard sources

like the U.S. National Weather Service or the World Meteorological

Organization, but hourly, weekly, or any other time were not. Use of
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standard available meteorological data became a critical design crite-

i-Ion for RESSys, even if the data were not exactly what was wanted.

Part of the purpose of the mountain climate (MT-CLIM; Running et
al., 1987) simulator was to calculate humidity and insolation from

the daily maximum-minimum temperature and precipitation records
that are the standard "weather" data recorded at the greatest num-

ber of stations. Humidity and radiation data are available from only

about 5% of the reporting weather stations in the U.S.

An alternative to this point meteorological data might be satellite
observations that have an areal average of around I00 km 2. We did

not find satellite surface meteorology routinely available, and sur-
face conditions are often obscured by clouds. Areally averaged data

would also invert our problem from extrapolation of point data to

interpolation of areal averages, problems that both require similar

climatology. It should be noted that our mountain climatology out of

necessity ignored wind speed and direction, both because of the

unpredictability and because forest canopies tend to have high

inherent aerodynamic mixing, so exchange processes are not very
sensitive to wind. Secondly, our mountain climatology ignores noc-

turnal, topographically induced cold air drainage.

It appears that the next step of coupling dynamic meteorology to

regional-scale ecology should be pursued with mesoscale models
run embedded in a GCM (Dickinson et al., 1989). Mesoscale models

such as the National Center for Atmospheric Research's MM4 have a

spatial resolution much more compatible with RESSys, and variable

vegetation dynamics produce important feedbacks to local meteorol-

ogy (Segal et al., 1988).

Regional Measurements and Validations

For many years the only "ecological" data that could be directly

measured at regional scales were occasional land cover classifica-
tions from Landsat. Because of the expense and computer require-

ments needed, these regional maps were produced as one-time sta-

tic products, much like vegetation maps in atlases. The development
of the advanced very high resolution radiometer/normalized differ-

ence vegetation index (AVHRR/NDVI) products, produced weekly,

began to add some temporal dynamics to our regional view of
ecosystems. The observable continental-scale dynamics were dra-

matic, following the seasonal "green wave" northward in the spring
and then back south in the fall (Justice et al., 1985; Goward et al.,

1985, 1987). However, the NDVI was still one long step removed

from the ecosystem process rates of greatest interest: carbon, water,

and nutrient cycling by the surface. More recently, our first- genera-

tion RESSys products (Running et al., 1989) have developed the
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computational ability to calculate these process rates over progres-
sively larger areas.

We are now finding that there is no established methodology for

validating these regional ecosystem process maps, particularly from

the classical field measurements that ecologists consider "hard" vali-

dation. The point samples of 0.1 ha that field ecologists have worked

on only represent 0.00001% of the land area of a single GCM ceil, and

rules for extrapolation are casual. Only remote sensing, a tool foreign
to most ecologists, has the capability for repetitive, standardized mea-

surements of regional-scale processes. Yet, with remote sensing we
are back to observing optical phenomena, such as the NDVI.

One notable exception is some of the global-scale atmospheric
CO2 concentration analyses (Houghton, 1987; Tans et al., 1990;

Fung et aI., 1987). These CO 2 data coupled with the seasonal NDVI

satellite data are the closest thing to observing a global biospherlc

"heartbeat" I have yet seen. At a smaller scale, the CO 2 flux mea-
surements taken from aircraft (Wofsy et al., 1988) or micrometeoro-

logical tower systems (Baldocchi, 1989) over multiple kilometer

scales, if done repetitively, could provide an integrated regional mea-

sure of carbon cycle activity. The one other regional-scale data base

we have for interpreting ecosystem processes is the hydrologic dis-

charge and balances of gauged watersheds, providing a large spatial

measurement of a key ecosystem variable, water cycling. Both these

CO 2 and water balance data may provide an integrated spatial mea-

surement for validation, but only at restricted, rather long monthly
to yearly time scales. The aircraft and tower flux measurements are

the only regional calculations that could provide daily validations.

Another potential source of validation for carbon cycle simula-

tions is the variety of crop yield, forest growth, range forage produc-

tion, etc., standard measurements taken by land management agen-

cies. These again are point samples and not the exact variables
needed, but are a huge network of data that could be used for vali-

dation of regional primary production simulations.

Applying Ecosystem Modeling Globally

We currently cannot envision taking RESSys-level mechanistic

process modeling to the global scale. Alternatively, we see that these

ecosystem process models could be used to "calibrate" highly simpli-
fied global models in a variety of different biome/climate situations.

Many of the following ideas are incorporated in our research plan for

the Moderate Resolution Imaging Spectrometer (MODIS), an instru-

ment in the Earth Observing System (EOS) program of the National
Aeronautics and Space Administration. EOS is the observational cor-
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nerstone of the U.S. Global Change Research Program, and MODIS is

the sensor planned for regular global land surface monitoring.
The best current candidate for this global modeling logic is the

NDVI, time integrated through the year (annual ZNDVI). Due to the

fact that the NDVI integrates both surface characteristics (vegetation

greenness, soil, and LAI) and key meteorological factors such as solar

intensity to the surface, the ZNDVI provides a simple yet surprisingly

versatile global measure (Tucker et al., 1985). We tested the correla-
tion between seasonal NDVI and ecosystem process rates for seven

locations around North America (Running and Nemani, 1988). For

continental-scale dynamics, we found amazingly good correlations

between annual ENDVI and seasonal photosynthesis, transpiration,

and net primary production (r2 = 0.72-0.87; see Figure 2a}. Even

weekly ecosystem activity was fairly well described by the seasonal
NDVI trace. However, we also found that the NDVI does not change

in evergreen forests that are drought or temperature stressed, indi-

cating that the NDVI alone may be able to define structure, but only

fortuitously correlates with canopy function {Figure 2b}.
We have also found the NDVI to correlate well against LAI of nat-

ural forests across Montana (Figure 3a}. To provide some satellite-

based definition of canopy stress, we combined in a ratio the NDVI

and surface temperature, producing an algorithm that represents

the partitioning of absorbed solar energy into sensible and latent
heat, or Bowen ratio, and mimicking a surface resistance quite well

(Figure 3b}.
While details of these ideas are available in the references, the

general conclusion we have drawn is that the time-integrated NDVI
can be a very robust global measure of vegetation activity, if cali-

brated well to varying conditions and biomes. We are planning to do

precisely that for our ten-year MODIS project, as summarized on
Figures 4 and 5. We plan to first define a very limited number of

biome types based on very simplified structural and functional char-
acteristics. The global vegetation would then be preclassified by

these characteristics, illustrating why we feel the model logic must
come before the classification scheme. Next we will build a mecha-

nistic ecosystem process model for each of these biomes, designated

collectively BIOME-BGC {Running and Hunt, in press}, which then
would be used to calibrate the simple global NDVI, biome-specific

conversion factors, and surface temperature data. After the launch

of EOS, this global simulation of biome processes would be done

weekly from MODIS data.
Because a prototype of this logic is already fairly complete for

western coniferous forests, we feel reasonably confident in this over-

all idea. However, at this point not all ecosystem processes have
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Figure 2. (a) The correlation found between the annual time-integrated NDVI

and annual net primary production (NPP) simulated for forests from seven
contrasting sites around North America in 1983 and 1984. The sites are

Fairbanks, Alaska (FAI); Jacksonville, Florida (JAC); Knoxville, Tennessee

(KNO); Madison, Wisconsin (MAD); Missoula, Montana (MIS); Seattle, Wash-

ington (SEA); and Tucson, Arizona (TUC). (b) The seasonal trend of weekly
composited NDVI compared to scaled weekly photosynthesis (PSN) and

transpiration (TRAN) simulated for a cold, dry climate conifer forest in 1984.
The absolute units are PSN = 1.78 MG C/ha/week/NDVI and TRAN = 48.1

mm/ha/week/NDVI (reprinted by permission of the publisher from Running
and Nemani, 1988; ©1988 by Elsevier Science Publishing Co., Inc.).
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Figure 3. (a) The relationship between A17I-IRR/NDVI for September 25, 1985,

and an estimated LAI for 53 mature conifer forest stands across Montana

(Nemanl and Running, 1989a). (b) The relationship between simulated

canopy resistance (Re;from Forest-BGC) and the slope of the surface

temperature/NDVI, _, for eight days during the summer of 1985, for a

20 x 25 km forested area of Montana. We hypothesize that this of actor

approximates a Bowen ratio of latent�sensible heat partitioning at a

regional scale (Nemani and Running, 1989b).
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MODIS PRODUCTS
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Figure 4. Flowchart of representative biome types we are defining, the input
data requlred for simulating ecosystem processes at local to regional scales,

and the output variables required for MODIS algorithm development.
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sources, the computational organization, and our planned outputs of MODIS-
derived ecosystem process simulations to be executed globally by 1998 as
part of EOS.
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been tested against NDVI. For example, some of the trace gas and

nutrient fluxes may not be correlated with NDVI, which logically can

be expected to represent canopy processes best. Hydrologic balances

leading to river discharge, ocean coupling, etc., would not be repre-
sented here. So, we offer this not as a complete global terrestrial

model, but as a dynamic global vegetation model that we know is
attainable with current technology.

Connection of this modeling to a GCM would require at minimum

a weekly redefinition of the surface characteristics of the GCM ceils,

which in principle should not be difficult. A more dynamic coupling
that would allow real-time system feedbacks might require the NDVI

model to be run within the atmospheric model so daily fluxes would

enter the atmosphere, and responses would influence the vegetation.

Then important responses like continental biome shifts resulting
from climate change could be explicitly simulated. However, it is diffi-

cult to combine real-time global NDVI measurements interfaced to an

internally self-sufficient simulation, unless for retrospective testing.

Conclusions

The following issues emerge as important considerations as we
further develop earth system models:

* Global land classification logic must be developed in concert with

the global modeling. We have found climate, LAI, and soil water

capacity to be most fundamental for regional ecosystem definition.

* Vegetation must be defined simply and generically; basic biome

types plus LAI seem best from our experience. This definition
must then pervade the logic of the biome models.

* In the absence of a GCM with calculated surface meteorology,

regional terrestrial models must be designed around a routinely

available meteorological data base, which will undoubtedly

require both climatological enhancement to fill in missing vari-
ables and spatial extrapolation/interpolation to produce a contin-

uous representation of the landscape at scales equivalent to the
terrestrial model.

• Any meaningful definition of the physlcal/chemical nature of the
global soils will be a problem.

• Full mechanistic models of biome processes are probably not pos-
sible globally, especially at the higher spatial resolution we desire,

so the biome models can be used to calibrate simple satellite-dri-

ven vegetation models such as weekly ENDVI that would then be
surface drivers for the GCMs.
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